5 research outputs found

    Increasing the Neutralino Relic Abundance with Slepton Coannihilations: Consequences for Indirect Dark Matter Detection

    Get PDF
    We point out that if the lightest supersymmetric particle (LSP) is a Higgsino- or Wino-like neutralino, the net effect of coannihilations with sleptons is to increase the relic abundance, rather than producing the usual suppression, which takes place if the LSP is Bino-like. The reason for the enhancement lies in the effective thermally averaged cross section at freeze-out: sleptons annihilate (and co-annihilate) less efficiently than the neutralino(s)-chargino system, therefore slepton coannihilations effectively act as parasite degrees of freedom at freeze-out. Henceforth, the thermal relic abundance of LSP's corresponds to the cold Dark Matter abundance for smaller values of the LSP mass, and larger values of the neutralino pair annihilation cross section. In turn, at a given thermal neutralino relic abundance, this implies larger indirect detection rates, as a result of an increase in the fluxes of antimatter, gamma rays and neutrinos from the Sun orginating from neutralino pair annihilations.Comment: 16 pages, 6 figures, references added, typos corrected, matches with the published versio

    Dark Matter in split extended supersymmetry

    Get PDF
    We consider the split extended (N=2) supersymmetry scenario recently proposed by Antoniadis et al. [hep-ph/0507192] as a realistic low energy framework arising from intersecting brane models. While all scalar superpartners and charged gauginos are naturally at a heavy scale, the model low energy spectrum contains a Higgsino-like chargino and a neutralino sector made out of two Higgsino and two Bino states. We show that the lightest neutralino is a viable dark matter candidate, finding regions in the parameter space where its thermal relic abundance matches the latest determination of the density of matter in the Universe by WMAP. We also discuss dark matter detection strategies within this model: we point out that current data on cosmic-ray antimatter already place significant constraints on the model, while direct detection is the most promising technique for the future. Analogies and differences with respect to the standard split SUSY scenario based on the MSSM are illustrated.Comment: 14 pages, references added, typos corrected, matches with the published versio

    Electroweak baryogenesis, large Yukawas and dark matter

    Get PDF
    It has recently been shown that the electroweak baryogenesis mechanism is feasible in Standard Model extensions containing extra fermions with large Yukawa couplings. We show here that the lightest of these fermionic fields can naturally be a good candidate for cold dark matter. We find regions in the parameter space where the thermal relic abundance of this particle is compatible with the dark matter density of the Universe as determined by the WMAP experiment. We study direct and indirect dark matter detection for this model and compare with current experimental limits and prospects for upcoming experiments. We find, contrary to the standard lore, that indirect detection searches are more promising than direct ones, and they already exclude part of the parameter space

    Low energy antideuterons: shedding light on dark matter

    Get PDF
    Low energy antideuterons suffer a very low secondary and tertiary astrophysical background, while they can be abundantly synthesized in dark matter pair annihilations, therefore providing a privileged indirect dark matter detection technique. The recent publication of the first upper limit on the low energy antideuteron flux by the BESS collaboration, a new evaluation of the standard astrophysical background, and remarkable progresses in the development of a dedicated experiment, GAPS, motivate a new and accurate analysis of the antideuteron flux expected in particle dark matter models. To this extent, we consider here supersymmetric, universal extra-dimensions (UED) Kaluza-Klein and warped extra-dimensional dark matter models, and assess both the prospects for antideuteron detection as well as the various related sources of uncertainties. The GAPS experiment, even in a preliminary balloon-borne setup, will explore many supersymmetric configurations, and, eventually, in its final space-borne configuration, will be sensitive to primary antideuterons over the whole cosmologically allowed UED parameter space, providing a search technique which is highly complementary with other direct and indirect dark matter detection experiments.Comment: 26 pages, 7 figures; version to appear in JCA

    Dark Matter candidates in a baryogenesis inspired scenario

    No full text
    It has recently been shown that the electroweak baryogenesis mechanism is feasible in Standard Model extensions containing extra fermions with large Yukawa couplings. We show that the lightest of these fermionic fields can naturally be a good candidate for cold dark matter. We find regions in the parameter space where the thermal relic abundance of this particle is compatible with the dark matter density of the Universe as determined by the WMAP experiment. We study direct and indirect dark matter detection for this model and compare with current experimental limits and prospects for upcoming experiments. We find, contrary to the standard lore, that indirect detection searches are more promising than direct ones, and they already exclude part of the parameter space
    corecore